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A Note on i-Class Groups of Number Fields* 

By Frank Gerth III 

Abstract. Let F be a number field and K a cyclic extension of degree I over F, where I 
is a rational prime. The i-class group of K is analyzed as a Gal(K/F)-module in the case 
where the i-class group of F is trivial. The resulting structure theorem is used to com- 
pute the structure of the 3-class groups of certain cyclic cubic fields that are discussed 
in a paper of D. Shanks. 

1. Structure of I-Class Groups. Let F be a finite extension field of the rational 
numbers Q, and let K be a cyclic extension of F of degree 1, where l is a rational prime. 
Let G = Gal(KIF), and let X be a generator of the cyclic group G. Let A denote the 
i-class group of K (i.e., the Sylow l-subgroup of the ideal class group of K). Then A is 
a finite abelian i-group. For convenience of notation, we shall write the operation in 
A as addition. Now A is a module over the ring of I-adic integers Z1 and also a module 
over G. So A is a Z,[G] module. Assume that the l-class group B of F is trivial. Then 
for each x E A, (1 +7+ + r'-1)x=O since (I + + .. . + r-1)x E B. 
Hence A is a module over Zi[G]/(l + r + . . . + rT-1)ZI[G]. But 
ZI[G]I/(l + r + . . . + r'1 )Z,[G] ZJf], where ? is a primitive Ith root of unity (the 
isomorphism is induced by r - ). Let A denote ZJl[(. Then A is a finitely gener- 
ated torsion module over the principal ideal domain A. The nontrivial ideals of A are 
(1 - t)A, (1 - t)2A, (1 - t)3A, .... Hence by applying the well-known structure 
theorem for finitely generated modules over a principal ideal domain, we obtain the fol- 
lowing theorem. 

THEOREM 1 . A A/(I - .)ilA CD A/(l - t)'2A ( ... @ A/(l - t)inA, where 
il, 1i2, . . ., in are positive integers, n = dimFI(A/(l - t)A), and Ft is the finite field 
of I elements. 

Remark. Let AG = {x E A Irx = x}. The exact sequence 

Q ~A G A A A -A/(l - r)A 0 

shows that dimF,(A/(l - r)A) = dimFlAG. Since A/(l - I )A A/(l - I)A, then the 
integer n in Theorem 1 satisfies n = dim AG 

Fl 
Next we want to show how to obtain the invariants of A as an abelian group 

from the invariants (1 - t)iA of A as a A module. Now in A, (1 - t)1`A I 1A. We 
write i = (l - l)r + s, where r and s are nonnegative integers with 0 < s < - 1. 
Then (1 - t)1A = (1 - t)slrA. Since A is a free module of rank 1 - 1 over Z,, then 

A/(I - t)iA - (Z lr+lZ)s e (Z I/rZ,)il-s 
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as Z1 modules. If we let Z denote the ring of rational integers, then as abelian groups 

zIlr+ 1 z I z/lr+ 1 z and z1/lrZI-Z/1rZ. 

Hence as an abelian group, A/(1 - t)iA is isomorphic to the direct sum of s cyclic 
groups of order lr+ 1 and I - 1 - s cyclic groups of order 1r. We summarize our results 
in the following theorem. 

THEOREM 2. Suppose A is decomposed as a direct sum of cyclic A modules as in 
Theorem 1. Let r1 and s1 be nonnegative integers such that i1 = (1 T l)r1 + s1 with 
0 < s1 < 1 - 1. Thlen as abelian groups, 

n 
A ? (D[(Z/lri+1 Z)si ,D (Z/lriZ)l-1-si]. 

j=1 
Remark. Results equivalent to Theorem 2 have been obtained by Gras [1], 

Inaba [3] and Zink [5]. 
In Theorem 2 let v denote the number of f's such that r1 : 0, and let w = 's, 

where the sum is taken over all j's such that r1 = 0. Then if we view A as an abelian 
lgroup, we obtain the following results from Theorem 2. 

COROLLARY 1. Rank A = (1 - 1)v + w. Moreover, A is the direct sum of an 
elementary abelian 1-group of rank w and an abelian 1-group of rank (1 - I)v. 

COROLLARY 2. If rank A < 1 - 1, then A is an elementary abelian 1-group. 
Remark. The results of this section can be generalized in various ways, and we 

shall present such results in other papers. 

2. Applications to a Paper of D. Shanks. In [4] Shanks investigates the ideal class 
groups of certain cubic fields. In particular, [4, Section 7] discusses certain cyclic cu- 
bic fields whose discriminants D satisfy two conditions: (1) D = N2, where N = a2 + 
3a + 9 for some a E Z, and (2) N is divisible by exactly two rational primes. Table 4 
of [4] lists examples of some cyclic cubic fields of this type whose 3-class groups have 
rank 2. Shanks was able to determine the structure of the ideal class groups of all but 
five of the fields in Table 4 of [4]. For these five examples, he lists the class numbers. 
By using the results from Section 1 with 1 = 3, we shall determine the structures of the 
ideal class groups for four of these five examples. (In the other example, the problem 
is to determine the 2-class group.) 

We let K represent a cyclic cubic field whose discriminant is divisible by t ratio- 
nal primes. Next we let A denote the 3-class group of K. If G = Gal(KIQ), then AG is 
an elementary abelian 3-group of rank t - 1 (cf. [1] or [2]). According to Theorem 1 
and the remark following it, A is a direct sum of t - 1 cyclic Z3[10 modules, where ? 

is a primitive cube root of unity. We now specialize to the case t = 2 of [4, Section 
7]. Then A is a cyclic Z3[1N module. If A has order 3m, then Theorem 2 implies 

A (Z/3m/2Z)2 if m is even, 

- (Z/3(m+)12Z) @ (ZI3(m 1- 2Z) if m is odd. 

This fact, together with the class numbers in Table 4 of [4] and the Theorem in [4, 
Section 4], gives the structure of the ideal class groups for the four examples. We list 
the results using the notation of [4]. 
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a N Q(p) 

338 73 - 1579 9 x 27 
341 7 16759 18 x 18 
351 9 *13807 9 x 63 
382 19 *7741 18 x 18 

The entries under Q(p) indicate the orders of the cyclic factors of the ideal class group. 
Shanks raises another question in [4, Section 7] with the example N= 9 * 73 and 

a = 24. The 3-class group A of this cyclic cubic field with discriminant (9 73)2 is the 
direct sum of two cyclic groups of order 3. So A has four subgroups of order 3. From 
a group-theoretic point of view, one would expect no significant differences among 
these subgroups. However, Shanks shows that the prime ideals of this number field are 
distributed in one of these subgroups in a manner different from the way they are dis- 
tributed in the other three subgroups. So there is one exceptional subgroup. The exis- 
tence of this exceptional subgroup can be anticipated if we consider A as a module over 

Z3[fi. Then A is a cyclic Z3[1] module, and there is a unique subgroup of A of order 
3 which is also a Z3[1] module. It is this subgroup of order 3 which is the exceptional 
subgroup. In fact, the manner in which the prime ideals are distributed in A reflects 
the action of Z3[1] on A (more precisely, it reflects the action on A of a generator r of 
G, and then Z3[f] acts on A by means of the isomorphism Z3[G]I(1 + r + r2)Z3[G] 

Z3[1] induced by r h-* T). 
Remark. For additional results on cyclic extensions of degree 1 whose discrimi- 

nants are divisible by exactly two distinct primes, see the thesis of W. Zink [5]. 
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